Image Operations
This section covers all read operations available for images in the Rosepetal API.
Overview
Images are the core data elements in the Rosepetal system. They contain visual data along with metadata such as annotations, tags, and classification information. The API provides endpoints to retrieve, analyze, and download images.
Image Structure
Each image object contains the following key properties:
Field | Type | Description |
---|---|---|
uri | string | Google Cloud Storage URI |
name | string | Original filename |
dataset | reference | Associated dataset reference |
tag | reference | Primary classification tag |
tags | array | Additional annotation tags |
tagsContained | array | References to all contained tags |
set | string | Training set assignment |
imageData | buffer | Thumbnail image data (WebP, 300px) |
date | number | Upload timestamp |
monitor | reference | Source monitor reference |
Endpoints
Delete Image
Remove an image from storage and database.
GET /image/delete/image/{encoded_uri}
Parameters:
Parameter | Type | Description |
---|---|---|
encoded_uri | string | Image URI with / replaced by -- |
Example Request:
GET /image/delete/image/upload--monitor-1--20240115.png
Response:
{
"error": false,
"status": "success"
}
Error Response:
{
"error": true,
"status": "Permission denied or file not found"
}
Object Detection
Analyze an image for objects using Google Cloud Vision API.
GET /image/detect/image/{encoded_uri}
Parameters:
Parameter | Type | Description |
---|---|---|
encoded_uri | string | Image URI with / replaced by -- |
Example Request:
GET /image/detect/image/upload--monitor-1--20240115.png
Response:
{
"result": [
{
"bbox": [0.1, 0.2, 0.3, 0.4],
"class": "Person",
"score": 0.95
},
{
"bbox": [0.5, 0.6, 0.2, 0.3],
"class": "Vehicle",
"score": 0.87
}
]
}
Bounding Box Format:
bbox[0]
: X coordinate of top-left corner (normalized 0-1)bbox[1]
: Y coordinate of top-left corner (normalized 0-1)bbox[2]
: Width (normalized 0-1)bbox[3]
: Height (normalized 0-1)
Get Image as Base64
Retrieve an image as a base64-encoded data URI.
GET /image/getb64/image/{encoded_uri}
Parameters:
Parameter | Type | Description |
---|---|---|
encoded_uri | string | Image URI with / replaced by -- |
Example Request:
GET /image/getb64/image/upload--monitor-1--20240115.png
Response:
{
"result": "..."
}
Error Response:
{
"error": true,
"uri": "upload/monitor-1/20240115.png",
"status": "File not found"
}
Image Sets
Images are organized into training sets for machine learning:
Set | Description | Typical Usage |
---|---|---|
TRAIN | Training data | 60-80% of dataset |
TEST | Testing data | 10-20% of dataset |
VALIDATION | Validation data | 10-20% of dataset |
PREDETERMINED | Default assignment | Before set splitting |
REVIEW | Requires manual review | Quality control |
Annotation Structure
Tags Array
Each image can have multiple annotations in the tags
array:
{
"tags": [
{
"type": "rect",
"tag": "dataset/123/tag/defect",
"x": 0.1,
"y": 0.2,
"w": 0.3,
"h": 0.4,
"labeled": "manual"
}
]
}
Tag Properties:
Field | Type | Description |
---|---|---|
type | string | Annotation type (rect, mask, point) |
tag | reference | Tag classification reference |
x, y | number | Top-left coordinates (normalized 0-1) |
w, h | number | Width and height (normalized 0-1) |
labeled | string | Source of annotation (manual, inference) |
Masks (Segmentation)
For segmentation datasets, images may contain mask information:
{
"masks": [
{
"tag": "dataset/123/tag/defect-type",
"uri": "gs://bucket/masks/mask_123.png"
}
]
}
Image Metadata
Upload Information
Field | Type | Description |
---|---|---|
date | number | Unix timestamp of upload |
monitor | reference | Source monitor/camera |
session | string | Recording session ID |
createdDate | timestamp | Firestore creation time |
updatedAt | timestamp | Last modification time |
Processing Information
Field | Type | Description |
---|---|---|
imageData | buffer | Thumbnail preview (WebP) |
originalFormat | string | Original file format |
width | number | Image width in pixels |
height | number | Image height in pixels |
URI Encoding
When working with image URIs in API calls, replace forward slashes with double dashes:
Original URI:
gs://project/upload/monitor/image.png
Encoded for API:
upload--monitor--image.png
Error Handling
Common Error Responses
Image Not Found
{
"error": true,
"status": "File not found"
}
Invalid URI Format
{
"error": "No defined image gsuri"
}
Processing Error
{
"error": true,
"status": "Permission denied"
}
Detection API Error
{
"error": "Vision API quota exceeded"
}
Query Examples
Basic Image Retrieval
// Get image as base64
const response = await fetch('/image/getb64/image/upload--camera-1--image.png');
const data = await response.json();
console.log(data.result); // data:image/png;base64,...
Object Detection Analysis
// Detect objects in image
const response = await fetch('/image/detect/image/upload--camera-1--image.png');
const data = await response.json();
data.result.forEach(obj => {
console.log(`${obj.class}: ${obj.score}`);
console.log(`Bbox: ${obj.bbox}`);
});
Safe Image Deletion
// Delete image with error handling
const response = await fetch('/image/delete/image/upload--old-image.png');
const data = await response.json();
if (data.error) {
console.error('Delete failed:', data.status);
} else {
console.log('Image deleted successfully');
}